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We describe the growth of vesicles, due to the accretion of lipid molecules to their surface, in terms of linear
irreversible thermodynamics. Our treatment differs from those previously put forward by consistently including
the energy of the membrane in the thermodynamic description. We calculate the critical radius at which the
spherical vesicle becomes unstable to a change of shape in terms of the parameters of the model. The analysis
is carried out for the case both when the increase in volume is due to the absorption of water and when a solute
is also absorbed through the walls of the vesicle.
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I. INTRODUCTION

Vesicles are small cell-like structures in which the mem-
brane separating the contents of the vesicle from the envi-
ronment takes the form of a lipid bilayer. Part of their appeal
comes from the fact that living cells are essentially very
complex vesicles—with the membrane containing mixtures
of different lipids and other components, a cytoskeleton, and
complex surface structures �1�. This has led to the use of
vesicles as the basic component of models of protocells
�2–4�. On the other hand, simple vesicles, without any addi-
tional structure, have many fascinating properties when ob-
served in the laboratory. Their self-assembly, their growth,
their shape, and the fact that they divide to produce daughter
vesicles have many aspects which are little understood. The
latter property of replication is especially interesting in the
context of models of protocells. One can ask, how much of
simple protocell dynamics can be explained using the statis-
tical thermodynamics of vesicles without the introduction of
more complex processes or of genetic material? This ques-
tion will be the motivation for the present work. In particular,
we will be interested in describing the dynamics of vesicle
growth and the instability which leads to the vesicle chang-
ing shape.

To begin the construction of a model for vesicles, it is first
necessary to review their dimensions. The typical thickness
of the bilayer is 7 nm, while the radius of the vesicle itself
can be anything from several times this value up to 100 �m
for so-called giant vesicles. Therefore the bilayer can be
thought of as a thin membrane or shell enclosing the contents
of the vesicle. In the case of biomolecules the standard pic-
ture of this membrane is the fluid mosaic model �5� where
the proteins, enzymes, and other such constituents are em-
bedded in the lipid bilayer in which the lipid molecules can
freely move as in a liquid. The proteins and enzymes may be
able to move from the inner part of the bilayer to the outer
part which is in contact with the environment. In the case of
interest to us here, these biological aspects are absent and
only the fluid nature of the bilayer remains. Therefore the
picture which emerges is of a two-dimensional surface,
which is supplemented with a thin fluid layer on either side
to describe the physical aspect of the bilayer �6�. Turning this

characterization into a quantitative description can be
achieved in several different ways; the resulting models go
under names such as the spontaneous curvature model �7� or
the bilayer couple model �8–10�. However, these models
have the common feature of a bending energy of the mem-
brane, which is given in terms of the curvature of the two-
dimensional surface, together with some extra feature which,
in some very basic way, accounts for the fact that the mem-
brane has a thickness. In the spontaneous curvature model
this is an extra factor C0 subtracted from twice the mean
curvature of the surface, and in the bilayer couple model it is
a constraint on the mean curvature. Here we will use the
spontaneous curvature model, for which the bending energy
is E= �� /2��dA�2H−C0�2, where H is the local mean curva-
ture, A is the surface area, and � is the bending rigidity.

The vast majority of studies of vesicles based on this form
of the bending energy have been of a purely static nature; the
energy E has been minimized subject to the constraints that
the area of the surface, A, and the volume of the vesicle, V,
be kept constant. The first constraint follows from the large
elastic compression modulus; the energy scale associated
with this is much greater than that associated with the cur-
vature elasticity, and this multiplies a term which fixes A �6�.
Similarly, the energy scale involving the osmotic pressure
difference is so large, compared with the curvature energy,
that the vesicle volume is effectively fixed. The shapes with
the lowest bending energy are usually investigated at differ-
ent values of a scaled spontaneous curvature and reduced
volume. A “phase diagram” of these minimal shapes in these
two variables has quite a complicated structure, with
“phases” of prolate ellipsoids and dumbbell and pear shapes
appearing, among others �6�.

Our intention here is to provide a means of linking these
snapshots of the vesicle shape. To do this we need a dynam-
ics which gives us a rule to move from one shape to another.
We will be chiefly concerned with setting up the correct dy-
namical description of this system, and so we will limit our
attention to the growth of spherical vesicles and the transi-
tion from a spherical to an ellipsoidal shape. Our treatment
differs from previous studies of this problem �11–14� in ways
that we describe in detail in Sec. II. However, all these ap-
proaches have the common features that they use macro-
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scopic variables and assume that the growth is sufficiently
slow that it may be described within the formalism of linear
irreversible thermodynamics.

The outline of the paper is as follows. In Sec. II we intro-
duce the formalism that will be used in the investigation and
compare our approach to those used previously. In Sec. III
we carry out the analysis of the growth and loss of stability
of the spherical vesicle in the simplest case of a purely aque-
ous environment, and in Sec. IV we show how this general-
izes when a solute is present. In Sec. V we summarize our
results and discuss them in the light of previous work and the
model assumptions. There is a mathematical appendix which
gives the technical details relating to Secs. III and IV.

II. DYNAMICAL DESCRIPTION

In the spontaneous curvature model the membrane is a
two-dimensional surface S, which separates an inner region I
from the environment E. The outer region could be a purely
aqueous environment, or it could also contain a solute, with
both the water and solute molecules being able to permeate
through the membrane.

The surface is a purely geometric construction; it contains
no matter and simply has a bending energy associated with
it. If its shape is known, then this bending energy only de-
pends on the volume V it encloses:

E�V� =
�

2
�

S

�C1 + C2 − C0�2dA , �1�

where C1 and C2 are the principal radii of curvatures of the
surface. In common with the other studies of this system
�11–14� the deviations from equilibrium will be taken to be
sufficiently small that the thermodynamic relation TdS=dE
+ PidV+����dc� can be used. Here Pi is the pressure of the
fluid inside the membrane and �� the chemical potential of
chemical � which has concentration c�. The only contribu-
tion from the membrane is a term dE= ��E /�V�dV, which
changes the pressure inside the vesicle from Pi to �Pi�eff
= Pi+ ��E /�V�. Therefore, as long as we replace the internal
pressure by this effective pressure, then we may ignore the
membrane from a thermodynamic point of view and simply
treat it as a boundary which separates the inside of the
vesicle from the environment.

A. Purely aqueous environment

The thermodynamic analysis of transport through a mem-
brane which is simply a geometric transition region between
two homogeneous regions was carried out by Kedem and
Katchalsky 50 years ago �15,16�. Suppose, to begin with,
that there is no solute present, so that only the flow of water
through the membrane need be considered. Then the usual
assumption of the thermodynamics of irreversible processes,
that the processes under consideration are sufficiently slow
to give a linear relation between the fluxes and the forces
�17�, lead to the relation �15,16�

Jw = Lp�P . �2�

Here Jw is the flux of water from the environment to the
interior, Lp is the hydraulic conductivity of the membrane,

and �P is the difference between the exterior pressure Pe
and that of the interior. However, as discussed above, to in-
clude the contribution coming from the curvature of the
membrane we need to replace �P by the effective pressure
difference given by

��P�eff � Pe − �Pi�eff = Pe − Pi − 	 �E

�V

 � �P − 	 �E

�V

 .

�3�

These results may now be brought together. The vesicle is
assumed to increase its surface area due to extra lipid mol-
ecules being added to the surface. This in turn will change
the pressure in the interior and so change ��P�eff and give
rise to a flux of water through the membrane. The rate of
increase of the volume of the vesicle will by given by

dV

dt
= AJw = LpA��P − 	 �E

�V

� , �4�

using Eqs. �2� and �3�.
We now assume a growth law for the surface area—that

is, the rate at which components are incorporated into the
vesicle membrane. The simplest, and also the most plausible,
is that this is proportional to the surface area �11�:

dA

dt
= �A ⇒ A�t� = A�0�e�t. �5�

The analysis below can be carried out with other growth
laws. At a more fundamental level we would expect the cor-
rect form to emerge from the chemical reactions underlying
this process. It is convenient to define a reduced volume by

v =
6�1/2V

A3/2 , �6�

so that v=1 for a sphere and v�1 for all other shapes. Then

dv
dt

= −
3

2
�v +

6�1/2

A3/2
dV

dt
= −

3

2
�v +

6�1/2

A1/2 Lp��P − 	 �E

�V

� ,

�7�

where we have used Eq. �4�.
If the spontaneous curvature C0 was absent in the defini-

tion of the bending energy, Eq. �1�, then the energy would be
scale invariant: a typical length scale associated with the
vesicle could be changed by an arbitrary scaling factor, and
E would remain unchanged. However, the inclusion of C0,
which has dimensions of inverse length, introduces a scale
into the problem. Suppose that R is the typical scale factor
associated with the vesicle; then, scaling the coordinates in
Eq. �1� by this factor, the typical length scale associated with
the vesicle is unity. After rescaling we denote the principal
radii of curvatures by ka=CaR, a=1,2. Similarly, a dimen-
sionless spontaneous curvature k0=C0R may be introduced
�6�. If the vesicle is spherical, the typical length scale can be
taken to be the radius and C1=C2=1 /R. Then

E = 2���2 − C0R�2 ⇒
�E

�V
=

C0�

R2 �C0R − 2� . �8�
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B. Including a solute

The formalism we have discussed in Sec. II A can be
generalized to include a solute. There will now be a flux of
solute, Js, in addition to the flux of water, Jw, and they will
be linearly related to the thermodynamic driving forces
which now include the difference in the osmotic pressure of
the solute across the membrane, ��s, as well as �P �15,16�.
The constants multiplying the forces in the linear relations
are Onsager coefficients, which will be symmetric in the
usual way �17�. In fact, we will use the linear relations in-
volving a slightly different linear combination of variables,
corresponding to the “second set of practical phenomeno-
logical equations” of Kedem and Katchalsky �16�:

Jv = Lp��P − 	��s� , �9�

Js = c̄�1 − 	�Jv + 
��s, �10�

where 	 is the reflection coefficient, c̄ is the mean concen-
tration of the solute, and 
 is the solute permeability. The
flux Jv is a linear combination of Jw and Js: namely, Jv

=JwV̄w+JsV̄s, where V̄w and V̄s are the partial molar volumes
of water and solute, respectively. If we assume an ideal sol-
ute, then ��s=kBT�c �18�, where kB is Boltzmann’s con-
stant and �c the difference in concentrations across the
membrane. This gives the more useful form

Jv = Lp��P − 	kBT�c� , �11�

Js = c̄�1 − 	�Jv + 
kBT�c , �12�

with �c=ce−ci.
In this case the total volume flow per unit area of the

membrane is Jv, and so Eq. �4� is replaced by

dV

dt
= AJv = LpA��P − 	 �E

�V

 − 	kBT�c� , �13�

where, once again, we have replaced �P by ��P�eff to ac-
count for the effect of the membrane curvature. Similarly, if
N is the number of molecules of the solute in the interior,
then

dN

dt
= AJs = A�c̄�1 − 	�Jv + 
RT�c� . �14�

This last result may be written in a number of different ways
using the relation N=ciV.

C. Comparisons with previous work

The analysis of the growth of vesicles presented in the
next section will start from Eqs. �13� and �14�. However, we
will end this section by discussing how these two equations
differ from those considered by previous workers investigat-
ing this problem. In Ref. �11� it was assumed that no solute
was present, so the relevant discussion is that presented in
Sec. II A. The equation which was used was not Eq. �4�,
however, since the term involving the bending energy was
introduced in a very different way: the pressure difference in
Eq. �2� was simply set equal to ��E /�V�, resulting in the

pressure difference being completely absent from Eq. �4�. We
believe our approach to be the correct way of proceeding.
The method of Ref. �11� is extended to include a solute in
Ref. �12�. A further point of disagreement with our treatment
is that the reflection coefficient 	 is set equal to unity. How-
ever, this is only true if the membrane is impermeable to the
solute, in which case 
 should equal zero too. The simulta-
neous use of Eqs. �13� and �14� when 	=1 was already ar-
gued against in the original paper of Kedem and Katchalsky
�15�.

The work reported in Refs. �13,14� has a different phi-
losophy; there, it is assumed that the instability by which the
division process begins—the sphere becomes unstable to an
ellipsoid—is a Turing instability. Thus these authors intro-
duce spatial effects, and the boundary of a two-dimensional
vesicle is defined on a lattice. The “total pressure” involving
the sum of the hydrostatic pressure difference, the osmotic
pressure difference, and the term coming from the surface
energy are all included. However, since this is a two-
dimensional vesicle, the form of the bending energy is dif-
ferent, and it is not clear to us why the surface tension is
included with such a large modulus. Thermodynamic rela-
tions similar to Eqs. �13� and �14� are used, but apparently
not to directly describe the change in vesicle shape. It is also
not so clear to us what role the two metabolic centers that
these authors introduce have in giving an initial anisotropy to
the vesicle and how crucial they are in initiating the
symmetry-breaking instability. Clearly subsequent divisions
will produce vesicles without these centers and therefore the
mechanism will have to still work in their absence.

One of the goals of the present work is to clarify the
various assumptions made and systematize the methodology
that is used to study vesicle growth and division.

III. FIRST BIFURCATION

In the purely static analysis of the model defined by Eq.
�1�, it is known that when the sphere becomes unstable, the
stable shape which replaces it is the ellipsoid �19�. As an
initial application of the formalism of Sec. II, we will inves-
tigate this instability from a dynamical viewpoint when no
solute is present.

The axisymmetric ellipsoid will be parametrized by ex-
pressing the Cartesian coordinates as

x = a sin � cos � ,

y = a sin � sin � ,

z = c cos � , �15�

where 0
��2�, 0
�
�, and a and c are constants. For
a sphere a=c�R, the radius. If the ellipsoid only differs in
shape from the sphere very slightly, then a and c may be
expressed as

a = R�1 + a1��, c = R�1 + c1�� , �16�

where � is a small quantity and a1 and c1 are numbers which
characterize the shape of the ellipsoid; if a1�c1, it is oblate,
and if a1�c1, it is prolate.
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Using standard results �20� and �16�, it is straightforward
to calculate the surface area and volume of the ellipsoid for
small �. The details are given in the Appendix where it is
shown that

A = 4�R2�1 +
2

3
�2a1 + c1�� + O��2�� ,

V =
4

3
�R3�1 + �2a1 + c1�� + O��2�� . �17�

From these expressions we see immediately that the reduced
volume v, defined by Eq. �6�, is 1+O��2�, and so we have to
go to next order in Eq. �17� to find the deviation of the
reduced volume from the value 1 which it has when the
vesicle is spherical. From Eqs. �A4� and �A5� we see that

v = 1 −
4

15
�a1 − c1�2�2 + O��3� , �18�

with v�1 for all cases except the sphere �a1=c1� as re-
quired. The bending energy is also straightforward to calcu-
late, but much more tedious. From it we can determine
�E /�V, as described in the Appendix.

Substituting the expressions for v and �E /�V into Eq. �7�
we find

8

15 ln 2
�a1 − c1�2�

d�

d�
= F0 + F1� + F2�2 + O��3� , �19�

where the Fj �j=0,1 ,2� are functions of R, �P, C0, and �
��Lp�C0

4 ln 2 /�� and are given explicitly in Eq. �A14�. We
have also introduced a scaled time �= t /Td, where Td
=ln 2 /� is the time taken for the surface area to double in
value. For Eq. �19� to be consistent as �→0 we require F0
=0, which gives �P in terms of R, C0, and �:

�P

�
=

C0
4R ln 2

2�
+

C0
2

R
−

2C0

R2 . �20�

Since Eq. �20� holds as �→0, it is true for the sphere and
could have been obtained more directly from the bending
energy of a spherical vesicle given in Eq. �8�. Then, since for
a sphere

dV

dt
=

R

2

dA

dt
=

�R

2
A ,

we see from Eq. �4� that

�R

2
= Lp��P −

�C0R�C0R − 2�
R3 � , �21�

which agrees with Eq. �20�. The quantity �P is the pressure
difference required for the vesicle to remain a sphere while
growing at a steady rate given by �.

Setting F0=0 in Eq. �19�, one sees that the two sides of
the equation are not of the same order as �→0 unless F1
=0. From the explicit form for this function given in the
Appendix, setting �P equal to the value given in Eq. �20�
gives the result displayed in Eq. �A15�. We see that, apart
from making a particular choice for R in terms of C0 and �,

we can only make F1 equal to zero by taking �2a1+c1�=0.
This simply amounts to a particular choice of ellipsoid
shape. It is, in some sense, the most symmetrical choice and
consists of changes in the direction of the two symmetric
axes being half of that in the third direction �and having the
opposite sign�.

Finally, setting both F0 and F1 equal to zero, which im-
plies the choice, Eq. �20�, and c1=−2a1 gives the expression
�A17� for F2 and leads to

d�

d�
= 	 13�

8C0
2R2 −

9�

2C0
3R3 −

13 ln 2

16

� + O��2� . �22�

If the term on the right-hand side of this equation is positive,
then the sphere will be unstable to a transformation into an
ellipsoid. This is the case if 2��13C0R−36��13C0

3R3 ln 2,
which can never be satisfied if C0R�36 /13. Similarly when
viewed as an inequality which is cubic in C0R, one finds that
it cannot be satisfied for any real positive C0R if ���min
where

�min =
372 ln 2

132 
 17.94. �23�

For C0R�36 /13 the condition for the sphere to be unstable
may be written as

� �
1

2
	13C0

3R3 ln 2

13C0R − 36

 . �24�

The region of instability is shown in Fig. 1. For values of
���min a dynamical transition can eventually occur, the
vesicle turning into an ellipsoid. We are only interested in the
first transition which is encountered as R increases, which
occurs for values of C0R greater than 36 /13, but less than the
value that corresponds to �=�min. This latter condition gives

0 5 10
C

0
R

0

20

40

60

η

ηmin

Ellipsoid

FIG. 1. The transition line defining the region of instability in
the parameter plane �C0R ,�� is depicted for a purely aqueous en-
vironment. There is no transition below the horizontal dashed line
�which represents �min=17.94� and to the left of the vertical dash-
dotted line �which represents C0R=36 /13�. In the remaining por-
tion of the figure, the thick solid line represents the transition from
the region on the left, where the spherical configuration is dynami-
cally favored, to the region on the right, where the ellipsoid con-
figuration is dynamically favored. The dotted line is an unphysical
solution of the cubic equation �26�.
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the result C0R=54 /13. Therefore the critical radius Rc at
which the transition occurs lies in the range 36 /13�C0Rc
�54 /13. It is interesting to note the fundamental role that
the phenomenological factor C0 has in determining the criti-
cal radius.

So, in summary, we suppose that initially the vesicle is a
sphere of radius R�0�. It then grows according to Eq. �5�; that
is, the radius increases according to R�t�=R�0�e�t/2. The
pressure difference between the interior of the vesicle and
the exterior during this growth phase may be found from Eq.
�20� to be

�P

�
=

C0
4R�0�ln 2

2�
e�t/2 +

C0
2

R�0�
e−�t/2 −

2C0

R�0�2e−�t. �25�

The growth phase continues until the vesicle has achieved a
radius of Rc, which is the smallest real positive root of the
cubic equation found by setting F2 equal to zero:

13C0
3Rc

3 ln 2 − 26�C0Rc + 72� = 0. �26�

As discussed above, there are no such roots for ���min,
given by Eq. �23�, and for ���min, C0Rc has to lie in the
narrow range �2.77,4.15�. The critical radius is reached at a
time

tc =
2

�
ln	 Rc

R�0�
 or �c =
ln�Rc/R�0��2

ln 2
. �27�

At this time the spherical shape becomes unstable and the
vesicle takes on an ellipsoidal shape.

IV. BIFURCATION WITH A SOLUTE PRESENT

In Sec. II we developed the formalism for the situation
where a solute was present, but for simplicity the analysis of
Sec. III assumed that the solute was absent. In this section
we will repeat the analysis of Sec. III with the solute in-
cluded.

The extra term which appears in Eq. �13� which changes
the position of the instability is −	kBT�c. To calculate it we
need to determine �c. This can be found from the other
equation we introduced, Eq. �14�; however, an integral over
time has to be performed. To see this, we use Eq. �13� to
write Eq. �14� as

d�ciV�
dt

= c̄�1 − 	�
dV

dt
+ A
kBT�c , �28�

where c̄=�c / ln�ce /ci� �15�. If we know A and V as functions
of t, then we can in principle solve this differential equation
for ci�t� and so find �c�t�, which can then be substituted into
Eq. �13�.

To illustrate these basic ideas, we will consider the special
case where the membrane is impermeable to solute mol-
ecules, so that the number of solute molecules, N, is con-
stant. However, ci�t� does change with time, due to the fact
that the volume V increases with time, and this has a non-
trivial effect on the instability analysis. A membrane imper-
meable to solute molecules is defined by 	=1 and 
=0. It
follows directly from Eq. �28� that ciV is a constant, and so

ci�t� =
ci�0�V�0�

V�t�
. �29�

Then the term −kBT�c which appears in Eq. �13� gives rise
to an additional term on the right-hand side of Eq. �7�, which
equals

−
6�1/2

A1/2V
LpkBT�ceV�t� − ci�0�V�0�� . �30�

Using the expressions �17�, this becomes

−
3LpkBT

R4 �1 −
4

3
�2a1 + c1�� + O��2��

� �ceR
3�1 + �2a1 + c1�� + O��2�� − ci�0�R3�0�� ,

�31�

to first order in �, since initially the vesicle is a sphere.
To see how these changes affect Eq. �19� let us write it as

8

15 ln 2
�a1 − c1�2�

d�

d�
= G0 + G1� + G2�2 + O��3� , �32�

where Gj �j=0,1� are related to Fj as follows:

G0 = F0 −
3���3� − 4�R3ce�

4�C0
4R4 ln 2

, �33�

G1 = F1 +
���3� − �R3ce�

�C0
4R4 ln 2

, �34�

where �=ci�0�V�0� and �=	kBT. The analogous result for
G2 is given by Eq. �A18� in the Appendix. Following the
same line of argument as in Sec. III we require G0 and G1 to
be zero in order for the stability analysis to be applicable.
The first condition gives an expression for the pressure dif-
ference across the membrane:

�P

�
=

C0
4R ln 2

2�
+

C0
2

R
−

2C0

R2 +
	kBT

R3 �R3ce − R3�0�ci�0�� ,

�35�

which shows the additional terms that are added to Eq. �20�
when a solute is present. The second condition G1=0 again
implies that �2a1+c1�=0, and so the addition of the solute
does not change the shape of the ellipsoid for which the
stability analysis applies.

If we now use the conditions found by implementing G0
=0 and G1=0 in Eq. �A18� and substituting this into Eq.
�32�, we find

d�

d�
= 	 13�

8C0
2R2 −

9�

2C0
3R3 −

13 ln 2

16
−

45���

32�C0
4R4
� + O��2� ,

�36�

which gives the required modification of Eq. �22�. A similar
analysis to that given in Sec. III shows that if
4�C0R�13C0R−36��45��, then the sphere is always
stable, no matter what the value of �. This gives the mini-
mum value of the radius R which can lead to an instability
�corresponding to an infinite value for �� of
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C0Rmin =
18

13
�1 +�1 +

65��

144�
� . �37�

If R�Rmin, the spherical shape is unstable if

� � 	 26�C0
4R4 ln 2

4�C0R�13C0R − 36� − 45��

 . �38�

Figure 2 depicts the domain of instability in the parameter
plane �C0R ,��. Different curves refer to different choices of
the quantity �� and allow the qualitative inspection of the
modification induced by the presence of a solute. The condi-
tion for a double root of the quartic equation for C0R gives,
as in Sec. III, the maximum value of R which can lead to an
instability:

C0Rmax =
27

13
�1 +�1 +

65��

162�
� . �39�

with the corresponding value of � being �min. This can be
determined as a function of �� by substituting the expres-
sion �39� for C0Rmax back into the quartic equation. The re-
sulting function is shown as an inset in Fig. 2. This increases
as �� increases �larger solute concentration and/or higher
temperature�. However, the ratio of Rmax /Rmin remains essen-
tially unchanged at about 1.5 for all values of ��. This
means that the range of values of the radius at which the
spherical shape becomes unstable remains quite small.

V. CONCLUSION

Despite the great interest in the growth, change in shape,
and division of vesicles, very little is known about the nature
of the processes that govern them. Even fundamental ques-
tions about the typical vesicle radii at the various stages or

the hydrostatic or osmotic pressure differences between the
exterior and interior are still largely open. The main obstacle
to achieving a greater understanding is the difficulty in car-
rying out experiments. Even qualitatively, a consistent pic-
ture is hard to achieve, and so a theoretical description which
would help with the interpretation of experimental results
would be very welcome. In this paper we have proposed
such a description, taking extra care to correctly incorporate
the energy associated with the curvature of the membrane in
the thermodynamic description. We have concentrated on es-
tablishing the formalism and demonstrating it on the initial
stages of the growth and on the first bifurcation to an ellip-
soid. The subsequent time evolution of the vesicle, leading to
division, can now be investigated, but this can only be car-
ried out numerically and we leave it for the future.

The vesicle growth is ultimately caused by the incorpora-
tion of lipids from the environment into the vesicle wall.
This will increase the area, which in turn will lead to a
change in the internal hydrostatic pressure and so initiate a
flow of fluid through the membrane. This will happen ex-
tremely slowly—at a rate governed by the parameter �—and
so in practice the vesicle will never become flaccid and will
maintain a spherical shape in the initial stages of the evolu-
tion. It is the quasistatic nature of the expansion that allows
us to use the formalism of linear irreversible thermodynam-
ics �17�. This predicts, among other things, that the radius of
the vesicle will grow according to R�t�=R�0�e�t/2=2t/�2Td� us-
ing �=ln 2 /Td. However, this exponential growth gets cut
off at a radius Rc given by the smallest real solution of Eq.
�26� at a critical time given by Eq. �27�. This critical radius
falls into a remarkably narrow range. The corresponding
value of the hydrostatic pressure can then be determined.

It is interesting to compare these results with those found
by the previous studies discussed in Sec. II C. In Refs.
�11,12�, the term involving the bending energy on the right
of Eq. �4� was effectively omitted and therefore the expres-
sion �20� did not contain the final two terms, which originate
from this term �see Eq. �8��. It could be argued that it is a
legitimate approximation, in the sense that for the parameters
of interest, this term is negligible compared to the one that is
retained. Since we have included both contributions, we are
able to test this by calculating the ratio between the first term
on the right-hand side of Eq. �20� and the sum of the second
and third terms. We find that this ratio always lies between 0
and 1. That is, the terms omitted in Refs. �11,12� are always
more important than the one included. This ratio is actually
zero at one extreme of the range of allowed values of R
�C0R=36 /13, which corresponds to an infinite value of the
parameter �� and increases monotonically to 9 /14 when C0R
takes on its greatest allowed value �54 /13� and � takes on its
smallest allowed value �17.94�. It should also be remarked
that in Ref. �11� the value of � used is 1.85, which is the
value at which vesicle splitting gives rise to two equal
vesicles, which are equal in size to the initial vesicle. Given
the inconsistencies in the formulation we have just alluded
to, it is doubtful that this value is correct. Further work is
required to enable a comparison between the work reported
in Refs. �13,14� and our approach. As explained in Sec. II C,
the method used is very different: the vesicle is a closed
curve in two dimensions, metabolic centers are present
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FIG. 2. �Color online� The region of instability is depicted for
the case when a solute is included in a similar manner to that shown
in Fig. 1 when a solute is not present. Different curves refer to
distinct values of the product �� �=0,5 ,10,20� with �� increasing
from left to right. The dotted line which passes through the minima
of these curves shows the maximum value of C0R for which a
transition can occur and is given by Eq. �39�. The corresponding
value of �, �min, is plotted in the inset as a function of the quantity
��.
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which induce the symmetry breaking, and the results ob-
tained are purely numerical.

These results, and others involving the nature of the initial
bifurcation, provide an initial set of predictions which can be
compared with future experiments. Of course, the model as it
stands is quite simple and many features could be made more
realistic. For instance, C0 is almost certainly not a constant
and becomes nonzero during the course of the vesicle
growth. Nevertheless, taking a nonzero C0 induces a transi-
tion �21�. Another aspect that we have not included in the
present treatment is a discussion of the effect of thermal
fluctuations on the shape of the vesicle. At first sight it is not
obvious if thermal fluctuations will have any appreciable ef-
fect. An order-of-magnitude calculation �22� suggests that
under most circumstances fluctuations will not need to be
taken into account; however, near an instability there may be
a significant effect. Within the static picture, which has been
the subject of by far the majority of papers to date, the pro-
cedure for investigating the effect of thermal fluctuations is
clear �22–26�. The shape is written as a sum of a stationary
term plus a small fluctuation and the energy expanded to
quadratic order in the fluctuation. Putting this into a Boltz-
mann factor, the Gaussian integrals may be performed. How-
ever, there are a number of technical issues, such as the
inclusion of constraints. There is also the question of the size
of non-Gaussian fluctuations. Nevertheless, it is clear that
thermal fluctuations can shift the position of an instability or
even change its nature completely. The analogous calculation
carried out within the present framework would be even
more complex; however, it should definitely be addressed in
future work.

Despite such shortcomings, and there are undoubtedly
others, we believe that the model is sufficiently detailed to
provide a reasonably good description of vesicle growth and
hope that it will serve to clarify a number of aspects in this
fascinating, and neglected, field.
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APPENDIX: SURFACE AREA, VOLUME, AND BENDING
ENERGY OF AN ELLIPSOID

In this appendix we will collect together the results which
are required to calculate the reduced volume and the bending
energy of an ellipsoid in Sec. III, together with the generali-
zation in Sec. IV.

The ellipsoids we consider here are axisymmetric. The
prolate version is formed by rotating an ellipse with semimi-
nor axis a and semimajor axis c �i.e., c�a� about the major
axis. It surface area is given by �20�

A = 2�a2 +
2�ac2

�c2 − a2
sin−1��c2 − a2

c
� . �A1�

For an oblate ellipsoid c�a and �20�

A = 2�a2 +
�ac2

�a2 − c2
ln�a + �a2 − c2

a − �a2 − c2� . �A2�

In both cases their volume is given by �20�

V =
4

3
�a2c . �A3�

Substituting the parametrizations �16� into the expressions
�A1�–�A3� one finds Eq. �17�. As mentioned in the text, this
immediately implies that the reduced volume is 1 to this
order, and so we have to go to next order in � to see some
deviation from the result for a sphere. At next order,

A = 4�R2�1 +
2

3
�2a1 + c1�� +

1

15
�6a1

2 + c1
2 + 8a1c1��2

+ O��3�� �A4�

and

V =
4

3
�R3�1 + �2a1 + c1�� + �a1

2 + 2a1c1��2 + O��3�� ,

�A5�

which together give the expression �18� for v to second order
in �.

The other quantity we have to evaluate is the bending
energy E, given by Eq. �1�. This involves evaluating the two
integrals

J1 � �
S

HdA, J2 � �
S

H2dA , �A6�

where H= �C1+C2� /2 is the mean curvature. For an axisym-
metric ellipsoid this is given by �20�

H =
c�3a2 + c2 + �a2 − c2�cos 2��
4a�a2 cos2 � + c2 sin2 ��3/2 . �A7�

Evaluating the integrals in Eq. �A6� using the result �A7�
yields

J1 = 2�c +
�a2

�c2 − a2
ln� c + �c2 − a2

c − �c2 − a2� �c � a� ,

J1 = 2�c +
2�a2

�a2 − c2
sin−1��a2 − c2

a
� �c � a� �A8�

and

J2 =
�c2

a
� sin−1��c2 − a2

c
�

�c2 − a2
+

7a

3c2 −
2a3

3c4� �c � a� ,

THERMODYNAMICS OF VESICLE GROWTH AND INSTABILITY PHYSICAL REVIEW E 78, 051406 �2008�

051406-7



J2 =
�c2

a
� tanh−1��a2 − c2

a
�

�a2 − c2
+

7a

3c2 −
2a3

3c4� �c � a� .

�A9�

Substituting the parametrizations �16� into the expressions
�A8� and �A9�, and using Eq. �A4�, one obtains

E = 2����C0R − 2�2 +
2

3
�2a1 + c1�C0R�C0R − 2��

+
1

15
�c1

2�32 − 4C0R + C0
2R2� + 8a1c1�− 8 + C0R + C0

2R2�

+ a1
2�32 − 4C0R + 6C0

2R2���2 + O��3�� . �A10�

The aim is to calculate �E /�V, which we achieve by using

�E

�V
=

�E

�R

dR

dV
. �A11�

From Eq. �A10� one finds

�E

�R
= 4��C0��C0R − 2� +

2

3
�2a1 + c1��C0R − 1��

+
1

15
�c1

2�C0R − 2� + 4a1c1�1 + 2C0R� + a1
2�6C0R − 2���2

+ O��3�� , �A12�

and from Eq. �A5�

dV

dR
= 4�R2�1 + �2a1 + c1�� + �a1

2 + 2a1c1��2 + O��3�� ,

�A13�

which gives an expression for �E /�V. Substituting this into
Eq. �7� and making use of the expression �18� for v we
obtain Eq. �19� with the Fj �j=0,1 ,2� given by

F0 = 3	C0
4R3 ln 2 − 4C0� + 2C0

2�R − 2�P̃�R2

2C0
4R3 ln 2


 ,

F1 = �2a1 + c1��	6C0 − 2C0
2R + �P̃R2

C0
4R3 ln 2


 ,

F2 =
1

15C0
4R3 ln 2

�2a1c1�− 82C0� + 16C0
2�R − 9�P̃�R2

+ 6C0
4R3 ln 2� − c1

2�98C0� − 29C0
2�R + 6�P̃�R2

+ 6C0
4R3 ln 2� − a1

2�278C0� − 74C0
2�R + 21�P̃�R2

+ 6C0
4R3 ln 2�� , �A14�

where �P̃=�P /�.
As explained in the main text, setting F0=0 gives Eq.

�20�. Using this expression for �P then gives

F1 = �2a1 + c1�	C0
3R3 ln 2 + 8� − 2�C0R

C0
3R3 ln 2


 . �A15�

Apart from exceptional values of R, this vanishes only when
2a1+c1=0.

If we now set c1=−2a1, we find from Eq. �A14� that

F2 = 3a1
2	14C0

2�R − 38C0� − �P̃�R2 − 6C0
4R3 ln 2

5C0
4R3 ln 2


 .

�A16�

Finally, setting �P to the value given in Eq. �20� one finds

F2 = 3a1
2	26�C0R − 13C0

3R3 ln 2 − 72�

10C0
3R3 ln 2


 , �A17�

which leads to Eq. �22�.
In Sec. IV, the calculation is carried out in the presence of

a solute. The equation which describes the instability is now
Eq. �32� with G0 and G1 given by Eqs. �33� and �34�, respec-
tively, and G2 given by

G2 = F2 −
��

10�C0
4R4 ln 2

�4a1c1�21� − 3�R3ce�

+ c1
2�33� − 4�R3ce� + 2a1

2�54� − 7�R3ce�� ,

�A18�

where once again �=ci�0�V�0� and �=	kBT.
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